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Abstract. A point lattice model, with parameters adjusted to fit ab initio band-structure 
calculations for a sodium monolayer, is used to determine the longitudinal response to an 
external potential as a function of frequency and wavevector. The imaginary part of the 
response shows loss peaks associated with both inter-band and collective excitations. An 
energy-loss peak observed for a sodium monolayer on an aluminium substrate is explained 
qualitatively by the results of this calculation. 

1. Introduction 

Many techniques used to study surfaces, such as electron energy-loss spectroscopy, 
differential surface reflectance and electroreflectance with p-polarised light, attenuated 
total reflection, and surface photoemission, involve the response of the surface to an 
external scalar potential. For a metal the screening of the external scalar potential by 
charges induced near the surface is an important effect which must be included in the 
calculation of this response. 

The free-electron model has been studied extensively. If the metal is described using 
a local (Drude) dielectric function, the induced charge is in an infinitesimally thin layer 
on the surface. There is a large body of literature on more accurate treatments of surface 
effects, in which the induced charge is smeared out in a physically realistic manner 
(Newns 1972, Inglesfield and Wikborg 1975, Griffin and Harris 1976, Feibelman 1982, 
Maniv and Metiu 1982, Persson and Ape11 1983, Gerhardts and Kempa 1984). The most 
accurate of these theories is the time-dependent local-density approximation (TDLDA), 
where the electronic wavefunctions and potential are found self-consistently for a uni- 
form jellium background with a sharp edge, and the exchange-correlation potential is 
added to the Coulomb potential both in the calculation of the ground-state properties 
and in calculating the screening of the time-dependent external potential (Liebsch 1985, 
Gies et a1 1987). 

Relatively little work has been done on the inclusion of lattice structure in calculations 
of surface response. Mochan and Barrera (1985) developed a general theory for the 
electromagnetic response of an inhomogeneous system, and a similar formalism, starting 
with a tight-binding band-structure calculation, was used to determine crystalline- 
induced anisotropy in the optical reflectivity of pure Si and H-covered Si for normally 

0953-8984/89/264081 + 07 $02.50 @ 1989 IOP Publishing Ltd 4081 



4082 R Fuchs and W Ekardt 

incident light (Del Sole and Fiorino 1984, Selloni et a1 1986). Other tight-binding model 
calculations for insulators have been reported (Wu and Hanke 1977, Inkson and Sharma 
1985), and recently the electron energy-loss spectrum for a semimetal (graphite) has 
been calculated (Palmer et a1 1987). A calculation of the band structure of a thin Ag 
film showed that a crystalline-induced surface state could explain electroreflectance 
measurements with normally incident light (Ho et a1 1980, Kolb et a1 1980). 

A two-step jellium model of alkali metal overlayers on A1 has been treated by Lang 
(1971) using the local-density approximation. This free-electron model is satisfactory for 
understanding ‘global’ ground-state properties such as the electronic charge distribution 
and work function. However, detailed calculations of the dynamic response of such 
systems (Eguiluz and Campbell 1985) indicate that a free-electron model is not adequate 
for explaining observed electron energy-loss spectra (Jostelll979, Hohlfeld 1986). The 
purpose of this paper is to present a simple method for including lattice structure in 
calculations of the response of metallic systems. As an initial application of the method, 
we will treat a free-standing sodium monolayer. 

2. Band structure of a monolayer 

In a very simple treatment of a sodium monolayer by Ishida and Tsukada (1986), each 
sodium atom is represented by two points at which the amplitude of the conduction 
electron wavefunction is defined. This model gives an s state and a single p state per 
atom, and contains an energy parameter which can be adjusted to fit the s-p energy 
difference for an isolated sodium atom. We shall use a model that can describe the 
true lattice structure more accurately and gives a better fit to ab initio band-structure 
calculations. We introduce a discrete lattice of points r, at which the wave function q(r f i )  
is defined. The eigenvalue equation is 

If the Hamiltonian matrix elements are written as H = TPu + Vpdfiu, it is evident that 
equation (1) is the finite-difference form of the Schrodinger equation (T + V)V(r )  = 
Eq!~(r) where the diagonal term V,S,,, is the potential energy V(r,) and the matrix with 
elements Tvy is the finite-difference form of the kinetic energy operator T. With a 
sufficiently fine lattice of points, equation (1) would be an accurate form of the single- 
particle Schrodinger equation. With a coarse lattice, which must be used for a practical 
calculation, the elements H, are regarded as adjustable parameters which can be chosen 
to give the best fit to accurate band-structure calculations. This method is thus similar in 
spirit to empirical tight-binding or k p methods. 

We adjust the parameters in our model to fit an ab initio calculation of the band 
structure of a hexagonal Na monolayer (Wimmer 1983). Bulk FCC Na (a fictitious crystal, 
since Na is BCC) can be formed by piling up such layers. An appropriate point lattice for 
a bulk FCC crystal is also FCC, with half the spacing of the true lattice. The nuclei occupy 
a quarter of the points on every other hexagonal layer. Three hexagonal lattice planes 
are used for a Na monolayer, as shown in figure l(a). We replace the position index ,U 

by three indices (i, a, s), where i = 1 , 2 , 3  labels the lattice planes located at z(i) ,  alabels 
the unit cells, and s = 1 , 2 , 3 , 4 ,  the four lattice points on plane i in a unit cell. Using this 
notation, we have rfi = z(i)d + rus(i), rUs(i) = R, + psi where rus, R,, and psi lie in the xy 

fiu.. 
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Figure 1. (a )  A point lattice representing a 
Na hexagonal monolayer. The open circles 
are in the plane z = 0, with the full circles 
at the nuclear positions, the points + are 
in the plane z = d / g 6 ,  and the points x 
are in the plane z = -d /d/h.  where d is 
the inter-nuclear distance. The broken line 
shows a unit cell. (b) The Brillouin zone 
with symmetry points. 
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- 2  Figure 2. The energy band structure of a Na hexagonal 
monolayer. The labels s. p,  and d denote the main character 
of a band. The Fermi energy is at E = 0. r 

plane. If we write v ( ru  = u(s, i) exp(ik. ros(i))  where the wavevector k lies in the xy 
plane and define 

equation (1) becomes 

which can be solved for the energy eigenvalues Enk and eigenvectors u,k(s, i). The 
calculated band structure, for wavevectors along the triangular path in figure l(b),  is 
shown in figure 2. We have used only three adjustable parameters: the diagonal energies 
H,, = 0.280 au at the nuclear positions and 0.180 au at the other points; the off-diagonal 
energies H p y  = -0.026 au for p ,  v nearest-neighbour points, Huv = 0 for more distant 
points. (The energy units are 1 au = 27.21 eV.) The s and p bands in figure 2 differ from 
those found by Wimmer (1983) by less than 0.2 eV, but the d band is about 1 eV too 
high. The fit can be improved by allowing the inter-layer coupling terms H,, to be 
different from the intra-layer terms, and by introducing next-nearest neighbour coup- 
ling. However, for the problem under discussion the most important bands are the s- 
and p-like ones, which are properly reproduced at the chosen level of our approximation. 
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3. Energy-loss spectrum 

The longitudinal response function is calculated from the complex susceptibility 
~ ( r ,  r', U) which relates the induced charge p ( r ,  U) and an external potential qext(r', U )  

via the symbolic equation p = xqPext .  Taking Fourier transforms in the xy plane, we find 

The susceptibility x is related to xo  by the symbolic RPA equation x = xo + xoVx or 

where 

V(q,G",h,I) = ( 2 ~ ~ / A l q + G " I ) e x p ( - I q + G ~ I / z ( h )  - z ( l ) I )  (4) 
and 

Here, q is a two-dimensional wavevector, G, G', and G" are reciprocal-lattice vectors, i, 
j ,  h ,  and 1 are lattice plane indices, and A is the unit-cell area. In the calculations we 
neglect local field effects by setting G = G' = G" = 0. This is the same approximation 
used previously by Ishida and Tsukada (1986). 

It has been shown (Persson and Andersson 1984, Persson and Zaremba 1985) that 
the surface response function 

is useful for calculating the energy-loss spectrum. Apart from a kinematic factor, the 
probability for reflecting an electron from the monolayer, with momentum transfer 
q parallel to the layer and energy loss U ,  is given by Img(q, U). In figure 3 the loss 
- function o Im g(q, U) is plotted as a function of U for selected values of q along the path 
r+  E.  The full curve shows the result from equation (6), and the broken curve is 
found using the susceptibility ,yo, which does not include screening effects, in place of x 
in equation (6). In the calculations we have used d = 6.92 au for the inter-nuclear 
distance and 6 = 0.0055 au for the width parameter in equation (5). 

The dispersion relations for collective and inter-band excitations are shown in figure 
4. Collective or plasmon excitations are labelled by c,, the subscript n denoting the 
number of zeros in the induced charge density across the monolayer, whereas an exci- 
tation corresponding to s-p inter-band transitions is labelled I. The mathematical distinc- 
tion between the two kinds of excitation modes can be seen by writing the solution of 
equation (3) in the schematicformx = (I - ,yoV)-lxo. Collective excitationscorrespond 
to zeros in the denominator: det(l - xoV) = 0, and inter-band excitations correspond 
t It is convenient to include the factor w in the loss function so that the areas under the full and broken curves 
are equal. 
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Figure 3. The loss function w Im g(q, U ) ,  in au, as 
- a function of w for selected q on the path 
r+  M. The full and broken curves were cal- 
culated from x (with screening) and ,yo (without 
screening), respectively. co and c,  label collective 
excitations. and I labels an inter-band excitation. 

Figure 4. Dispersion relations for the collective 
and inter-band excitations shown in figure 3. 

to peaks in Im,yo. In a multilayer film, the excitations cg and c1 become surface plasmons, 
and a number of excitations c2, c3, . . . , appear, which are standing-wave bulk plasmons. 
These bulk plasmon excitations do not contribute appreciably to the loss function; e.g., 
the peak from c2 does not show on the scale of figure (3)t. 

4. Discussion 

A reflection loss peak at about 2.7 eV has been observed for a sodium monolayer on an 
aluminium substrate for electrons with an incident energy of 100 eV and a momentum 
transfer q = 0.0124~;’ (Hohlfeld 1986). We expect the ‘monopole’ plasmon peak co to 
be perturbed strongly by the substrate, moving up to an energy of about 10 eV, the 
surface plasmon energy for Al. The position of the inter-band excitations I should be 
relatively unaffected by a substrate because they have an effective single-pair character 
and do not carry a long-range electric field penetrating the substrate. Therefore, if strong 
t There is a peak corresponding to the cZ excitation in the transmission loss function (Ishida and Tsuitada 
1986). 
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hybridisation with substrate levels does not occur, these excitations may account for the 
experimentally observed EELS peaks around 2.5-3.1 eV at low coverages, which are 
considerably below the surface plasmon frequency of a thick bulk sample of Na. A 
reflection loss peak at 3.1 eV for a Na monolayer on a Ni substrate has been attributed 
to an inter-band transition in Na (Jostelll979). It is possible that the difference between 
these measured values and the calculated one at 2.4 eV is due to a ‘chemical’ effect of 
the substrate and to the fact that the distance between the Na atoms in the overlayer 
differs from that used in the calculations. For instance, at low coverage, 8 = 4, a well 
ordered d3 x d 3  R30” LEED pattern is observed experimentally, which would cor- 
respond to an equivalent lattice constant of a freestanding monolayer of Rb. The results 
of more accurate calculations, which take account of the actual structure of the overlayer 
and include presence of the substrate, will be reported in the future. 
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